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Review
The available techniques for assessing blood cell func-
tions are limited considering the various types of blood
cell and their diverse functions. In the past decade, rapid
advances in microengineering have enabled an array of
blood cell functional measurements that are difficult or
impossible to achieve using conventional bulk plat-
forms. Such miniaturized blood cell assay platforms also
provide the attractive capabilities of reducing chemical
consumption, cost, and assay time, as well as exciting
opportunities for device integration, automation, and
assay standardization. This review summarizes these
contemporary microengineered tools and discusses
their promising potential for constructing accurate in

vitro models and rapid clinical diagnosis using minimal
amounts of whole-blood samples.

Microengineered tools for functional blood cell analysis
Human blood circulating in the body reaches and
exchanges information with every tissue through the vas-
cular network and is therefore an important indicator of
the functional status of the human body. Many life-threat-
ening diseases either are directly caused by abnormalities
of the blood or blood flow (e.g., ischemic heart disease,
stroke, diabetes) or can be detected through careful exami-
nation of molecular and cellular biomarkers circulating in
the blood (e.g., cancer, HIV/AIDS, tuberculosis) [1–4].
Because of their ready availability, blood cell analysis
and phenotyping are arguably the most common and im-
portant tests used in the clinic to provide physiological or
pathological information for disease diagnosis and staging,
treatment selection, safety and efficacy monitoring, and
drug-dose adjustment.

Complementary to complete blood count and morpho-
logical analysis, functional blood cell analysis is sometimes
necessary as it provides direct information regarding the
functional status of the human body. Red blood cell (RBC)
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fragility and deformability [5], white blood cell (WBC)
immune response [6], and platelet aggregation [7] are
among the most common functional tests performed on
blood cells. However, the available techniques for asses-
sing blood cell functions are limited, especially when con-
sidering the various types of blood cell and their diverse
functions involved in different physiological and patholog-
ical contexts. Moreover, conventional tools for analyzing
blood cell functions are bulky and costly, rely on complex
manual operations and sample preparation, and are
designed exclusively for research or clinical settings
[8,9]. Due to these common technical limitations, tradition-
al blood cell functional analysis and phenotyping tools
remain difficult to standardize and do not meet the needs
of modern clinical and health-care applications, including
accurate and rapid testing of the diverse functions of blood
cells, point-of-care diagnostics, and the construction of
highly reliable in vitro models [10].

Recent advances in microengineering have offered
researchers and clinicians an exciting new set of tools
for accurate, fast, and affordable analysis of the cellular
components of the blood (Box 1) [11,12]. The ability to
precisely control and manipulate single cells in a defined
environment has enabled an array of functional measure-
ments that are difficult or impossible to achieve on con-
ventional bulk platforms. Such miniaturized assays also
provide the attractive capabilities of reducing chemical
consumption, cost, and assay time, as well as exciting
opportunities for integrating blood cell analysis with up-
stream blood sample preparation on a monolithic platform
[13]. This review introduces recent achievements in micro-
engineered tools for the functional analysis and phenotyp-
ing of blood cells. Examples of how microengineered tools
are adapted for analysis of RBCs, WBCs, and platelets are
discussed. Finally, we offer speculations on the research
directions and potential opportunities for microengineered
blood cell analysis tools to meet current and future chal-
lenges of clinical and laboratory diagnosis.

Functional analysis of RBCs
RBCs are the most abundant cells in human blood, with a
normal concentration of around 5 � 109 cells/ml. With a
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Box 1. The microengineered toolbox

Laminar flow

Fluid flow in most microfluidic devices is laminar due to the small

geometrical size of the devices. The stable and predictable flow field

for laminar flow makes it easy to maintain a predefined shear rate, the

magnitude of which can be tuned by adjusting flow rate or

microchannel geometry. Laminar flow can also be manipulated to

create complex flow patterns such as flow focusing [28,87] and

hydrodynamic stretching [25,58] (Figure IA).

Constriction channels

Microfluidic constriction channels are microchannels whose width

is smaller than that of cells passing through the channels (Figure IB).

They have been extensively used as mechanical means to deform

blood cells to assess their deformability. For ease of fabrication,

almost all constriction microchannels have a rectangular cross-

section, which differs from the circular blood-vessel shape. Despite

this difference, constriction microchannels have been successful in

retaining in vivo blood cell functionalities [88].

Microwell array

Microwell array is used for isolation and analysis of single

blood cells (Figure IC) [89]. To ensure single-cell trapping, a blood

cell suspension with a proper cell density is placed onto the microwell

array and allowed to sediment into the microwells. One microwell

array thus contains up to thousands of single cells, with each single

cell trapped in an individual microwell. Each of the microwells creates

a confined cellular environment that can effectively concentrate

analytes and amplify detection sensitivity.

Microcontact printing

Microcontact printing (mCP) is a simple yet highly versatile method

to pattern proteins on various kinds of substrate [90,91]. Briefly, a

monolayer of protein is coated on a micropatterned elastomeric

stamp. The stamp is then brought into direct contact with the target

substrate, to which proteins can preferentially bind. Only proteins in

direct contact with the substrate are transferred onto it (Figure ID). For

blood cell functional analysis, mCP is mainly used for patterning

adhesion proteins for cell adhesion and aggregation.

Micropost force sensor

The micropost force sensor was originally developed to measure cell

traction force (Figure IE). It contains a regular array of vertical

elastomeric posts with a post diameter down to 1–2 mm. The tips of

the microposts are functionalized with adhesive proteins, with the post

sidewalls passivated with nonadhesive molecules to ensure that cells

adhere to the post tops. When a cell exerts lateral contractile force on

the underlying posts, the posts will bend and the magnitude of the cell

contractile forces can be inferred by the displacements of the post tips.
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Figure I. The microengineered toolbox. (A) Microfluidic control of laminar flow. In one example, sample flow is focused by buffer flows to width w, which is determined

by the ratio of buffer flow rate (Qb) to sample flow rate (Qs). In another example, extensional shear force was generated at the intersection of four perpendicular flows.

(B) Microfluidic constriction channel for cell deformation assays. (C) Microwell array for simultaneous capture and analysis of thousands of single cells. Fluorescence-

based biodetection [e.g., enzyme-linked immunosorbent assay (ELISA)] can be used to measure the amount of protein secreted by each single cell trapped in the

microwell. (D) Microcontact printing for selective surface functionalization. The protein is absorbed on the micropatterned surface of a polydimethylsiloxane (PDMS)

stamp before being transferred onto a substrate by direct contact of the two surfaces. (E) Micropost force sensor for measuring the contractile force of platelets and

blood clots.
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biconcave discoid shape and a diameter of 6–8 mm, they are
highly differentiated cells that lack a nucleus and most
organelles [5]. Two properties of RBCs – deformability and
ATP release – are commonly measured for the clinical and
laboratory diagnosis of diseases such as malaria, sickle-cell
disease, and pulmonary hypertension [14–16].

Deformability of RBCs

Healthy RBCs are smooth and extremely deformable so
that they can easily pass through the spleen and micro-
capillaries. Abnormal stiffness of RBCs is usually an
indicator of disease. For example, in Plasmodium falci-
parum-infected malaria patients, RBCs gradually lose
their deformability with progression of the infection and
late-stage infected RBCs can become stiffer by a factor of
50 [14]. There is also loss of RBC deformability due to
abnormal polymerization of hemoglobin in patients with
sickle-cell disease [15]. In both diseases, hardened RBCs
can impair blood circulation and may eventually lead
to occlusion.

Conventional RBC deformability assays can be classi-
fied into bulk assays that measure the average effect on a
RBC population and single-cell assays that assess the
deformability of single RBCs [5]. In a commonly used
filtration assay, anticoagulated blood flows through a fil-
tration membrane with a pore diameter of 5 mm and the
pressure drop across the membrane, which correlates with
RBC deformability, is measured [17]. Because bulk RBC
deformability assays deal with a RBC population, they
cannot identify subsets of RBCs or rare RBCs that have
direct pathological implications [18]. By contrast, single-
cell deformability measurements such as micropipette
aspiration [19] and ektacytometry [20] apply hydrostatic
or shear force to individual RBCs while simultaneously
monitoring their morphological changes using microscopy.
However, due to the complexity of the experimental set-up
and cumbersome assay procedures, single-cell assays for
RBC deformability measurements tend to have a low
throughput (1–10 cells/h).

The recent trend of using high-throughput and multi-
plex microfluidic technologies to redesign traditional bulk
and single-cell deformability assays has significantly im-
proved their performance. For instance, a microchannel
network was constructed with a constant channel depth of
6 mm and varying channel widths of 6–70 mm (Figure 1A)
[21]. An RBC suspension with a hematocrit of 40% was
perfused through the network under a constant hydraulic
pressure and the average RBC transit velocity was mea-
sured to indicate cell deformability. Compared with the
conventional filtration assay, which works only under 1%
hematocrit, this microfluidic perfusion assay was shown to
be more sensitive to small changes of RBC deformability.

Microfluidic constriction channels that resemble micro-
pipettes have also been developed for measuring the
deformability of single RBCs in a high-throughput manner
(Figure 1B) [22]. A 2D microfluidic constriction array, for
example, is capable of measuring the deformability of 104

cells simultaneously [22,23]. Such high-throughput single-
cell measurements made it possible to identify a small
subset of P. falciparum-infected RBCs from a large back-
ground population of normal RBCs. Another strategy for
increasing single-cell assay throughput has been devel-
oped by continuously pushing single RBCs through a
constriction while measuring the cell transition time in
real time using integrated electrodes based on the Coulter
principle [24]. A throughput of 10 cells/s was reported
using such a continuous-flow operation.

The aforementioned microfluidic devices all utilize de-
fined microscale constrictions to mechanically deform
RBCs while the cells are passing through constrictions
under the influence of external forces. However, such
confined microfluidic environments unavoidably lead to
clogging. A newly developed hydrodynamic stretching de-
vice can effectively avoid clogging by using inertia focusing
and fluid shear force to stretch single RBCs [25]. The shape
of the deformed RBCs was recorded using a high-speed
camera and a cell-shape-elongation index was used to
describe RBC deformability (Figure 1C).

Label-free cellular biomarkers such as mechanical
deformability are attractive targets for point-of-care test-
ing, as measuring such markers may eliminate the use of
chemicals that are often costly and difficult to transport
and store. With the ability for rapid, high-throughput
measurements of the mechanical properties of RBCs,
microfluidic deformability assays may provide promising
solutions for rapid diagnostic testing for diseases such as
malaria. It should be noted, however, that such microflui-
dic deformability assay platforms need more careful char-
acterization and validation using clinical blood samples to
fully assess their sensitivity, accuracy, and clinical utility.

ATP release by RBCs

RBC-derived ATP stimulates nitric oxide (NO) synthesis
by endothelial cells, which in turn induces relaxation of
vascular smooth muscle cells in the blood vessel wall to
facilitate the passage of RBCs in narrow vascular regions
[26,27]. Impaired ATP release has been shown to correlate
with pulmonary hypertension [16]. ATP concentration is
commonly measured using luciferase assays, which can be
conveniently combined with a microfluidic constriction
channel or flow focusing that deforms RBCs and triggers
their ATP release (Figure 1D) [28]. An important advan-
tage of such microfluidic ATP-releasing assays is the real-
time detection capability, which is useful for providing
biological insights into ATP biosynthesis. This feature
was exploited in an elegant study investigating the time
delay between cell deformation and ATP release in RBCs
[29]. The microchannels used in this study contained a
segment of narrow constriction to locally deform and stim-
ulate single RBCs. Deformed RBCs were allowed to recover
downstream of the narrow constriction. Using this device,
it was shown that the response time between RBC defor-
mation and ATP release was tens of milliseconds, and this
delay decreased with increasing shear stress and was
independent of RBC stiffness.

Functional analysis of WBCs
WBCs are functional units of the immune system that
protects the human body from foreign invaders. The num-
bers, composition, and functional responses of WBCs
change drastically in the presence of infections, malignan-
cies, and autoimmune disorders. In particular, WBCs can
3
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Figure 1. Microfluidic cell deformability assays for red blood cells (RBCs). (A) A

microfluidic vasculature network to perfuse a RBC suspension, where RBCs were

deformed by constriction channels [21]. Bar, 30 mm. Reproduced, with permission,

from [21]. (B) Time-lapse images showing deformation of a single RBC moving

through a constriction [22]. Bar, 5 mm. Reproduced, with permission, from [22]. (C)

In a hydrodynamic stretching device using viscoelastic fluid, single RBCs were

spontaneously focused to the center of the channel and stretched by shear force as

they approached the intersection [25]. Bar, 50 mm. Reproduced, with permission,

from [25]. (D) Flow focusing was used to deform RBCs and trigger their ATP release

[28]. Bar, 100 mm. Reproduced, with permission, from [28].
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secrete soluble proteins, termed ‘cytokines’, to regulate the
growth, maturation, and responsiveness of immune cells.
The production of interferon gamma (IFN-g) by T cells, for
example, correlates with the body’s ability to mount a
vigorous immune response against tuberculosis infection
[30]. Thus, detection of cytokine secretion from WBCs is of
great importance both for fundamental understanding of
human immunity and for immune monitoring in healthy
humans and in those with allergy, asthma, autoimmunity,
acquired or primary immunodeficiency, transplantation,
or infection. In inflammatory response, WBCs also need to
emigrate from the blood vessel to enter targeted tissues, a
process dependent on WBC deformability and adhesion
and the shear rate of the blood flow [31]. Here we focus on
two types of WBC functional analysis – functional immu-
nophenotyping and deformability measurements – that
have recently been achieved using innovative microengi-
neered tools.

Functional immunophenotyping of WBCs

Functional immunophenotyping refers to the identification
of cytokine secretion levels by immune cells and can be
conducted at the whole-cell population, subpopulation, or
single-cell level [32]. Recently, various novel microengi-
neered tools have been developed to improve traditional
functional immunophenotyping assays for WBCs.

Miniaturized enzyme-linked immunosorbent assay/spot

(ELISA/ELISpot)/AlphaLISA. ELISA/ELISpot is the cur-
rent gold standard in quantifying cytokine secretion from
WBCs. However, conventional ELISA/ELISpot requires
multiple washings and incubations and is notorious for
its tedious manual operation and prolonged assay time.
Miniaturized ELISA/ELISpot was developed with the aim
4

of reducing sample consumption and assay time while
maintaining high sensitivity [33–35]. Notably, miniatur-
ized immunoassays are convenient for integration with
upstream blood cell separation, and such integrated cell
isolation and biodetection microfluidic devices are ideal for
assessing the functional status of subsets of immune cells
or even single immune cells. For example, microscale anti-
CD4 and anti-CD8 antibodies were printed on polyethyl-
ene glycol (PEG) hydrogel-coated glass slides to capture
CD4+ and CD8+ T cells directly from RBC-depleted blood
samples (Figure 2A,B) [36]. On the same slide, next to anti-
CD4 and anti-CD8 antibody spots, interleukin-2 (IL-2)-
and IFN-g-specific antibodies were printed to detect IL-2
and IFN-g secreted from captured T cells, respectively
[36]. This antibody array device was later successfully
combined with a holographic imaging system for point-
of-care applications [37].

Cellular heterogeneity is common in an isogenic cell
population. Thus, quantitative immunophenotyping of sin-
gle immune cells is desirable for the precise assessment of
patient immune status [38,39]. By reducing the size of
antibody spots on PEG gels, single immune cells were
captured and cytokine secretions from the captured single
cells were measured [40]. Another elegant technique for
single-cell immunophenotyping is the microwell array
designed for trapping individual WBCs in a confined micro-
well environment [41–43]. Cytokines secreted by single
WBCs were confined in the microwell, resulting in signifi-
cantly increased cytokine concentrations that were readily
detected by antibodies coated on the coverslip sealing the
microwell. This microwell immunophenotyping assay was
successfully utilized for simultaneous quantification of
three different cytokines secreted from single WBCs. More
recently, the microwell array was combined with a high-
density antibody barcode array for simultaneous detection
of 14 cytokines secreted from single WBCs (Figure 2D)
[44,45].

AlphaLISA is a newly developed, homogeneous, no-
wash, bead-based chemiluminescence immunodetection
assay [46]. Using AlphaLISA, a microfluidic immunophe-
notyping assay (MIPA) device capable of on-chip cell trap-
ping, endotoxin stimulation, and in situ cytokine
measurement was recently developed [47]. The MIPA
device incorporated a polydimethylsiloxane (PDMS) micro-
filtration membrane (PMM) for isolation and enrichment of
WBCs. The PMM further allowed diffusion of cytokines
secreted from WBCs trapped on the PMM to an underlying
immunoassay chamber, where biodetection using Alpha-
LISA was conducted. The MIPA device required 20-fold
fewer cells than traditional immunoassays and the total
assay time was seven times shorter than conventional
ELISA. More recently, the MIPA device was combined
with antibody-coated microbeads for the isolation and
immunophenotyping of different subpopulations of WBCs
from whole-blood specimens (Figure 2C) [48].

Although all of the aforementioned methods used on-
chip microwell or microfiltration structures to capture
target immune cells, they still require some human inter-
vention to conduct immunosensing. To address this limi-
tation, a microfluidic system incorporating integrated
microvalves was recently developed for single-cell isolation
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Figure 2. Paradigm of functional immunophenotyping of white blood cells (WBCs) using microengineered tools. Background red blood cells (RBCs) are first removed from

whole-blood samples by lysis. Target WBC subsets are then isolated for cytokine secretion measurements. (A) Schematic of RBC lysis. (B) Antibody-coated surface for

capturing subsets of WBCs. Target WBCs are bound to the antibodies coated on the glass slide during incubation while unbound cells are washed away [36]. (C) Isolation of

subsets of WBCs using antibody-coated microbeads and microfilters. Target WBCs are retained on the filter as the microbead is larger than the filter pore size, while all

other undesired WBCs pass through the filter freely [48]. (D) High-density antibody barcode using sandwich enzyme-linked immunosorbent assay (ELISA) for multiplexed

detection of secreted proteins [44,45]. Adapted, with permission, from [44]. (E) Principle of localized surface plasmon resonance (LSPR) biosensing on a gold nanoparticle

surface. The absorbance spectrum peak shift is used to quantify the amount of cytokine secreted by WBCs [51]. Adapted, with permission, from [51].
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and automation of ELISA [49]. This highly integrated and
automated system minimized human intervention and
could potentially be utilized to improve the standardiza-
tion of ELISA-based immunoassays.

Label-free methods. Conventional immunoassays require
the labeling of analytes with fluorescent molecules for
detection, rendering such immunoassays as end point-
detection methods. To investigate dynamic immune
responses, semiconductor nanowires were fabricated to
enable label-free detection of low concentrations of anti-
bodies and were further applied to the real-time monitor-
ing of immune responses by WBCs [50]. More recently, a
label-free immunoassay based on localized surface plas-
mon resonance (LSPR) was developed to detect tumor
necrosis factor alpha (TNF-a) secreted by CD45+ cells iso-
lated directly from human blood (Figure 2E) [51]. The assay
time of these label-free immunosensing methods is much
shorter than that of conventional ELISA; however, their
clinical utility remains limited due to the manual sample
preparation necessary before immunosensing [52]. Further
optimization and integration of such label-free immunosen-
sing methods with on-chip sample-preparation components
would be required for these label-free methods to fulfill
their potential for clinical applications [53].

Deformability of WBCs

Abnormality of WBC deformability is an important
indicator of diseases such as sepsis [54] and diabetes
[55]. However, the low throughput associated with tradi-
tional deformability assays hampers their use in clinical
applications. An on-chip micropipette aspiration system
was developed to improve the throughput of traditional
micropipette aspiration, where single WBCs were trapped
and deformed at a constriction by a carefully designed
microfluidic circuit [56]. The threshold pressure allowing
the cell to pass through the microscale constriction was
recorded. Using this device the authors were able to conduct
single-cell deformability assays at a throughput of 30 cells/h.
An astonishingly high throughput of 2000 cell/s was
achieved by the deformability cytometer based on inertial
focusing and fluidic shear force for cell deformation
[57,58]. Interestingly, scatter plots of cell size and deform-
ability (here defined as the ratio of the long-axis length of the
cell body to its short-axis length) for a population of WBCs
resembled cytometry plots, suggesting that cell size and
deformability are completely decoupled traits for WBCs.

Functional analysis of platelets
Platelets are the smallest and second most abundant
corpuscle in the blood. Platelets are derived from frag-
ments of the cytoplasm of megakaryocytes and thus do not
contain a nucleus. Normal platelets are discoid-shaped
cells with a diameter of 2–4 mm and a thickness of about
0.5 mm. On activation, platelets change into a more round-
ed shape with long dendritic extensions to facilitate
adhesion [59]. The primary functions of platelets are
hemostasis and thrombosis, both of which are related to
5
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Figure 3. Microengineered devices for measurement of platelet adhesion and contraction. (A) Platelet aggregates on collagen spots of different sizes after perfusion with

whole blood. A threshold collagen pattern size of 20 mm was necessary for platelet adhesion [63]. Adapted, with permission, from [63]. (B) Microfluidic thrombosis device to

independently control transthrombus pressure and wall shear stress. Localized collagen plug surrounding posts defines platelet adhesion site. In addition, its permeability

allows control of transthrombus pressure [66]. Adapted, with permission, from [66]. (C) A microfluidic device with high-shear stenosed region to induce thrombus

formation in whole blood [67]. Adapted, with permission, from [67]. (D) Micropost array for measurement of platelet contractile force (PCF). Platelets form microclots and

exert contractile forces on the micropost force sensors after adding thrombin [80]. Adapted, with permission, from [80]. (E) Atomic force microscopy (AFM) for measuring

the PCF of single platelets. As a single platelet contracts, its length shortens, causing the AFM cantilever to deflect [83]. Adapted, with permission, from [83].
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coagulation, a complex and highly regulated process
[60]. Platelet adhesion and contraction are two important
functional phenotypes involved in coagulation that have
been assessed using newly developed microengineered
tools.

Platelet adhesion

Platelet adhesion is the first step in clot formation and is
mediated by various plasma and extracellular matrix
(ECM) proteins [e.g., von Willebrand factor (VWF), fibrin-
ogen, collagen] and mechanical cues such as the shear force
of the blood flow. Failure of platelet adhesion is considered
a marker of various coagulation disorders, including von
Willebrand disease (vWD), hemophilia A and B, and afi-
brinogenemia [60]. To reconstruct the process of platelet
adhesion during hemostasis, collagen stripes and dots
were deposited in microfluidic channels using microfluidic
patterning and microcontact printing (mCP) to mimic a
wound formed in vivo (Figure 3A) [61–63]. The latest
version of the device incorporated a parallel-channel de-
sign to generate a broad range of shear rates (50–920/s) on
the same chip to investigate the effect of shear stress on
platelet adhesion and clot formation, with results suggest-
ing a threshold ECM pattern size of 20 mm required for
platelet adhesion and faster platelet clotting under higher
shear stress conditions [63]. This threshold ECM pattern
size for clot formation was also observed in another study
using tissue factor (TF) patches of predefined sizes coated
on lipid bilayers [64,65]. Another important factor regulat-
ing hemostasis is the transthrombus pressure gradient
that drives bleeding. This parameter was specifically ex-
amined in a microfluidic device that could independently
6

control shear rate and transthrombus pressure by incorpo-
rating multiple fluid/pressure inlets and outlets on a single
microfluidic chip (Figure 3B) [66].

In another study targeting thrombosis, a stenosis was
included in a microfluidic channel to assess the time
needed for a clot to form and completely block the stenosis
(i.e., the occlusion time) (Figure 3C) [67]. Real-time blood
clot formation was monitored by measuring light trans-
mission through the thrombus: as the thrombus grew, light
transmission increased. By integrating multiple channels
on the same device, the authors varied flow rates from
physiological to pathological conditions (500–13 000/s) and
observed that occlusion occurred only at shear rates above
4000/s [67]. Similarly, a microfluidic device containing
microscale constrictions was constructed to mimic a steno-
sis formed in an arteriole [68,69]. Combining this in vitro
microfluidic system with intravital microscopy, it was
demonstrated that hydrodynamics could play a pivotal role
in the formation of thrombus at the stenosis.

In addition to shear rate, pressure, and ECM pattern
size, microfluidic channels were also utilized to study the
effect of agonists/antagonists on platelet adhesion. Micro-
channels comprising NO-releasing polymers were fabricat-
ed to independently tune NO concentration and shear rate
[70]. These assays revealed that platelet adhesion and
aggregation diminished when NO flux exceeded a certain
threshold and completely disappeared if NO flux became
too high.

Platelet contraction

In the final step of blood coagulation, the platelet–fibrin
clot retracts, resulting in decreased fluid drag [71] and



Review Trends in Biotechnology xxx xxxx, Vol. xxx, No. x

TIBTEC-1196; No. of Pages 9
stiffening of blood clots [72,73]. Blood clot retraction is
mediated by actomyosin-based contraction of actin micro-
filaments in platelets, giving rise to platelet contractile
force (PCF) [74]. PCF plays an essential role in coagulation
and can serve as a functional marker for platelet dysfunc-
tion [75,76]. Various conventional methods (e.g., platelet
clot strip [77], clot retractometry [78]) have been developed
to measure PCF. However, these techniques are designed
for bulk studies and therefore cannot replicate microscale
platelet–fibrin interactions and the delicate dynamics of
blood clot formation.

Since the concept of PCF is similar to that of the cell
traction force exerted by adherent mammalian cells on the
ECM, well-established methods for cell traction force mea-
surements have been adapted to assess PCF. For example,
traction force microscopy was employed to study the
dynamic evolution of PCF during platelet activation,
where microbeads were incorporated into the surface of
a compliant polymer substrate and platelets were allowed
to adhere and exert PCF on the substrate [79]. When the
platelets started contracting, displacements of beads were
observed and recorded to deduce the force field. Another
popular cell traction force measurement tool termed a
micropost force sensors was also utilized to measure
PCF [80]. Platelets were seeded on top of PDMS microposts
pre-coated with fibrinogen or fibronectin to facilitate plate-
let adhesion. Once platelets were activated by addition of
thrombin, deflections of the microposts were observed and
recorded to calculate PCF based on the Euler–Bernoulli
beam theory (Figure 3D). Variations of this method have
been developed to study the effects of glycoprotein Ib and
VWF [81], as well as shear force [82], on platelet contrac-
tion. In another recent study, custom-built side-view atom-
ic force microscopy (AFM) was used to measure the PCF
generated by single platelets bridging the AFM cantilever
and a substrate (Figure 3E) [83].

The microengineered tools discussed above for PCF
measurements have significantly improved measurement
accuracy and sensitivity to unprecedented levels. However,
these tools were designed primarily for mechanistic stud-
ies of PCF and thus are complicated and suboptimal for
direct clinical applications. Automated microengineered
tools that are convenient to use for measuring PCF
remains to be developed to identify disorders in hemostasis
and thrombosis.

Concluding remarks and future perspectives
It is clear that microengineered tools have already made a
positive impact on transforming the functional analysis
and phenotyping of blood cells. First, microengineered
tools consume smaller amounts of blood samples and assay
chemicals, making them highly desirable for applications
where such resources are limited or costly. Prominent
examples include microfluidic immunoassays for pediatric
and neonatal patients [47] and platelet functional assays
for high-throughput screening (HTS) of antiplatelet drugs
[84]. Second, microengineered tools allow precise control
and manipulation of blood cells and their microenviron-
ment at a scale comparable to that of single cells
and microcapillaries. This enables accurate and sensitive
functional analysis of blood cells, such as RBC deformation
and ATP release, WBC deformability, and platelet adhe-
sion and contraction, to unprecedented levels. Finally,
microengineered tools bring about exciting opportunities
for assay automation by integrated device designs, paving
the way for assay standardization and point-of-care
applications.

With an increasing number of studies utilizing micro-
engineered tools to reveal fundamental blood cell physiol-
ogy and the mechanisms of blood-related diseases, most
current microdevices are designed for a single type of blood
cell only. In reality, each blood cell resides in a complex
environment where multiple types of cell coexist and influ-
ence each other. To construct more reliable in vitro models,
a promising approach is organ-on-a-chip devices that can
be adapted to construct blood vessel mimics and incorpo-
rate multiple blood cell types [85]. Such organ-on-a-chip
devices are promising platforms to study endothelium–
blood cell and RBC–WBC–platelet interactions. Regarding
practical applications such as rapid diagnosis of malaria
and HIV/AIDS, microengineered blood cell analysis
tools need to be further simplified and automated [86]. Par-
ticularly, integration with on-chip blood sample prepara-
tion will be required for a much higher degree of device
automation.

The field of microengineering is evolving quickly to
address the challenges ahead. We believe that future
microengineered tools will continue to offer new function-
alities, revealing novel insights into blood cell physiology
and providing exciting opportunities for advanced clinical
diagnosis using minimal blood samples.
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