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Deep-dLAMP: Deep Learning-Enabled Polydisperse
Emulsion-Based Digital Loop-Mediated Isothermal
Amplification

Linzhe Chen, Jingyi Ding, Hao Yuan, Chi Chen,* and Zida Li*

Digital nucleic acid amplification tests enable absolute quantification of
nucleic acids, but the generation of uniform compartments and reading of the
fluorescence requires specialized instruments that are costly, limiting their
widespread applications. Here, the authors report deep learning-enabled
polydisperse emulsion-based digital loop-mediated isothermal amplification
(deep-dLAMP) for label-free, low-cost nucleic acid quantification. deep-dLAMP
performs LAMP reaction in polydisperse emulsions and uses a deep learning
algorithm to segment and determine the occupancy status of each emulsion
in images based on precipitated byproducts. The volume and occupancy data
of the emulsions are then used to infer the nucleic acid concentration based
on the Poisson distribution. deep-dLAMP can accurately predict the sizes and
occupancy status of each emulsion and provide accurate measurements of
nucleic acid concentrations with a limit of detection of 5.6 copies μl-1 and a
dynamic range of 37.2 to 11000 copies μl-1. In addition, deep-dLAMP shows
robust performance under various parameters, such as the vortexing time and
image qualities. Leveraging the state-of-the-art deep learning models,
deep-dLAMP represents a significant advancement in digital nucleic acid tests
by significantly reducing the instrument cost. We envision deep-dLAMP would
be readily adopted by biomedical laboratories and be developed into a
point-of-care digital nucleic acid test system.

1. Introduction

Nucleic acid detection plays a central role in the identification
of pathogen infection, diagnosis of genetic diseases, and genetic
analysis.[1] Nucleic acid amplification test, particularly real-time
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polymerase chain reaction (qPCR), has
been the primary method for nucleic acid
detection. Despite that, the quantification of
qPCR requires the reference of standards
with known concentrations, which compli-
cates the test and induces inter-laboratory
variations.

Digital PCR (dPCR) provides a power-
ful means for the absolute quantification
of nucleic acids without using references.
Droplet digital PCR (ddPCR), a commonly
used dPCR method, compartmentalizes the
sample into tens of thousands of water-
in-oil droplets with uniform, pre-defined
volumes and performs PCR therein.[2–5]

By enumerating the occupied and empty
droplets, the nucleic acid concentration can
be inferred using the Poisson distribution.
Since the quantification assumes uniform
droplet volumes, ddPCR normally uses mi-
crofluidics to generate highly monodisperse
droplets, making it costly. Though vari-
ous economical alternatives, such as cen-
trifuge [6] and impact printing,[7] have been
proposed, the operation could not be eas-
ily translated to different laboratories. In
terms of droplet reading, a straightforward

method is to analyze the fluorescence images of still droplets in
a microchamber,[8,9] but it is labor-intensive and difficult to scale
up.[10] In-flow interrogation of droplets’ fluorescence offers much
higher throughput, but it requires sophisticated devices such as
laser and photomultiplier tubes for efficient excitation and signal
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detection, making the setup complicated and costly. Digital nu-
cleic acid tests with economical, reliable compartmentalization
and reading have yet to be achieved.

To simplify the compartmentalization step, the strategy of us-
ing non-uniform volumes has been proposed and demonstrated
to be efficacious.[11,12] For example, polydisperse droplets were
generated using vortexing, and PCR was performed therein. In
the reading step, droplet volumes were measured in addition to
droplet occupancy,[11] and the occupancy and volume data were
then used to infer the sample concentration based on the Poisson
distribution. In this strategy, droplets could be generated using
very convenient means like vortexing,[12–14] avoiding the need for
a costly specialized instrument for uniform droplet generation.
Nevertheless, fluorescence imaging-based reading of droplet oc-
cupancy and volumes has yet to be simplified.

Loop-mediated isothermal amplification (LAMP) generates a
byproduct of magnesium pyrophosphate that forms visible pre-
cipitates under brightfield, providing a label-free indicator of
the amplification product alternative to fluorescent probes.[15,16]

However, presumably due to the challenge in image analysis,
non-uniform volume digital LAMP based on in-flow detection of
droplets and precipitates has not yet been reported.

To develop a low-cost digital nucleic acid test that could be im-
plemented using standard instruments, here we implemented
a deep learning-enabled polydisperse emulsion-based digital
LAMP (deep-dLAMP) for nucleic acid quantification. The deep-
dLAMP method consists of four major steps, namely emulsion
generation and LAMP reaction, emulsion imaging in a flow cell,
deep learning image analysis (emulsion segmentation, volume
regression, and precipitate-based occupancy classification), and
statistical inference of nucleic acid concentration. Deep-dLAMP
can accurately predict the size and occupancy status of each
droplet with a throughput of up to hundreds of droplets per video
frame. In the application of deep-dLAMP, the method provides
accurate nucleic acid quantification when the sample concentra-
tion ranges from 37.2 to 11000 copies μl−1 with a limit of detection
of 5.6 copies μl−1. We further show that deep-dLAMP provides
robust measurements using different vortexing parameters and
cameras with varying image qualities, even when the emulsion
brightness and size distributions are not within the deep learn-
ing training data distribution. The deep-dLAMP method devel-
oped in this work represents a significant advancement in the
nucleic acid detection field by combining the accessible hardware
(vortex mixer, thermal cycler, and camera-coupled brightfield mi-
croscope available in most laboratories) and state-of-the-art deep
learning models. It can be readily adopted by common biomed-
ical laboratories and opens a new path for developing point-of-
care digital nucleic acid test systems with significantly reduced
instrument costs.

2. Experimental Section

2.1. Reagents

The LAMP reactions primarily used a commercial kit that detects
Proteus mirabilis (051011M, Guangzhou Double Helix Gene
Technology Co.). The primer sequences and reagent composi-
tion are tabulated in Table S1 and S2, Supporting Information,
respectively. Detection samples were prepared by serial dilution

of plasmids with target sequences. The DNA concentration of
the stock plasmids was (1.12 ± 0.09) × 104 copies μl−1, as mea-
sured by fluorescence-based droplet digital LAMP. The detec-
tion of SARS-CoV-2 used a proprietary primer kit and plasmid
(LP1002, HaiGene Biotech Co.), targeting the ORF1ab gene. The
sequence of the target gene is tabulated in Table S3, Support-
ing Information. The continuous phase of the emulsions used
a commercial droplet generation oil (1864006, Bio-Rad Labora-
tories, Inc.). FITC-conjugated IgG (A16097, Invitrogen; 0.04 mg
ml−1) and TRITC-conjugated IgG (HA1016, HuaBio; 0.01 mg
ml−1) were used for droplet tracing in the examination of droplet
coalescence.

2.2. Fabrication of Microfluidic Chips

The microfluidic chips were fabricated using the standard pro-
cess of SU-8 photolithography and polydimethylsiloxane (PDMS)
replica molding. Fabrication of the SU-8 masters was outsourced
to a microfabrication company (Suzhou Research Materials Mi-
crotech Company, China). Upon arrival, the SU-8 molds were
oxygen plasma-treated (PDC-002, Harrick Plasma) and exposed
to silane vapor in a vacuum chamber for 10 h. PDMS prepoly-
mers (Sylgard 184, Dow, Inc.) with a base-to-hardener ratio of
10:1 were mixed, degassed, and poured onto the SU-8 masters
before being baked at 60 °C for 10 h. The cured PDMS was then
peeled off and cut into desired shapes before inlets and outlets
were punched out. The PDMS slabs and glass slides were treated
with oxygen plasma for 1 minute, placed in contact, and baked at
110 °C briefly for bonding. The devices were then baked at 60 °C
for 24 h to turn the channel surface hydrophobic.

2.3. Emulsion Formation and LAMP Amplification

Polydisperse emulsions were formed using a vortex mixer (LP
Vortex Mixer, Thermo Scientific). 50 μl droplet generation oil and
25 μl prepared samples (LAMP mix and DNA samples) pipetted
into a 0.2 ml PCR tube (PCR-0208-C & PCR-2CP-RT-C, Axygen).
Unless otherwise mentioned, the tube was vortexed at 3200 rpm
for 15 s. The emulsified samples were then incubated at 63 °C
for 45 min using a real-time PCR instrument (QuantStudio 1,
Thermo Fisher Scientific) for quality control during the ampli-
fication. Monodisperse emulsions were formed using a flow-
focusing microfluidic chip with the flow driven by a negative
pressure (−21.33 kPa relative to 1 atm) at the outlet (Figure S4,
Supporting Information). The diameters of the resultant droplets
were 46.37 ± 1.64 μm (0.052 nl).

2.4. Emulsion Imaging

After amplification, the samples were retrieved by a 1 ml plas-
tic syringe connected with tubing (PE60, Scientific Commodi-
ties Inc.). The samples were then manually infused into a mi-
crofluidic channel where a stream of spacing oil was maintained
by infusing oil at 300 μl h−1 using a syringe pump (LSP01-
2A, Longer Precision Pump Co.) to ensure reasonable spacing
between emulsions. The microfluidic channel had a width of
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800 μm and a height of 46.54 ± 1.31 μm, as measured by cutting
through a PDMS slab and imaging under a microscope. The flow
of emulsions was imaged in brightfield mainly using an inverted
microscope (Eclipse Ti2-E, Nikon) coupled with a camera (DS-
Qi2, Nikon). Videos were captured at a frame rate of 20 frames
per second and lasted for 3–5 min, resulting in about 5400–
9000 frames for each video. When studying the dependence of
the algorithm on image quality, another two imaging systems
were used, including an Eclipse Ts2 inverted microscope (Nikon)
coupled with a Phantom VEO-E310L camera (Vision Research)
and an Eclipse Ts2-FL microscope (Nikon) coupled with a DS-Fi3
camera (Nikon). Fluorescence of DNA-intercalating reagents was
imaged using the Eclipse Ti2-E microscope.

2.5. Deep Learning-Based Droplet Quantification

Training data were generated using the LabelMe annotation
tool.[17] A total 638 image frames were taken from the collected
videos at different nucleic acid concentrations. For each image,
droplet regions were masked and labeled the droplets in terms of
the presence of precipitates. The collected images were randomly
split into 9:1 train:test ratios. The Mask R-CNN was used as the
image segmentation model and adapted the Mask R-CNN code
by Abdulla for TensorFlow 2 implementation.[18,19] The Resnet-
50 model was chosen as the backbone model. The original video
frames were resized from size 1368× 1368 pixels to 768× 768 pix-
els for faster model training. The training region of interest (ROI)
per image was 512, and the maximum ground truth instances per
image during training were 100. The non-maximum suppression
threshold was set to 0.95 to generate a sufficient amount of pro-
posals. The anchor box sizes were 32, 64, 128, 256, and 512 pix-
els, with strides being 4, 8, 16, 32, and 64 pixels and width-length
ratios of 0.5, 1, and 2. The maximum number of instances per
image during the detection was set to 400.

The stochastic gradient descent (SGD) optimization algorithm
was used with a learning rate of 0.0005 in model training. The
imgaug image augmentation tool[20] was used to execute 0 to 2
of the following augmentations on the fly in a training batch: 1)
left-right flipping of 50% of the images, 2) up-down flipping of
50% of the images, 3) 50% probability of cropping 0–20% of the
height/width, 4) affine transformation by scaling height/width by
−30% to 30%, translating x/y by −30% to 30% of width/height,
shearing by −4 to 4 degrees, or rotating by −90 to 90 degrees, 5)
changing the brightness from 10% to 150% of the original value,
and 6) Gaussian blurring with random sigma between 0 and 5.0.
The augmentations were found to improve the robustness of the
model. The models were trained up to 100 epochs.

2.6. Data Analysis

The densities of the mix and oil were about 1 and 1.63 g ml−1, re-
spectively. Therefore, the emulsions were subject to significant
buoyance in the flow cell. When the emulsions were small, it
was assumed that the emulsions did not touch the channel bot-
tom and that the emulsions volumes scaled with the cubic of the
imaged equivalent diameter (2

√
Area∕𝜋). Uniform microfluidic

droplets with volumes ranging from 0.02 to 0.4 nl (determined by

assuming spherical shape in an unconfined environment) were
generated, imaged the droplets in the flow cell, and performed
regression to calibrate the relationship between imaged equiva-
lent diameters and emulsion volumes. When the emulsions were
large, it was assumed that the emulsions adopted a cylindrical
shape and that the volume could be calculated as the product of
the imaged area and channel height. The intersection of these
two curves (120 μm) was regarded as the transition point be-
tween the two assumptions, as shown in Figure S3, Supporting
Information. The volume and occupancy status of each emulsion
were used to calculate the sample concentration by solving Equa-
tion (2). The equation solving was implemented in Python using
Newton iteration as described in a published work.[12]

The limit of detection was calculated as 3.2 times the standard
deviation of the calibrated measurements of blank samples. Dy-
namic range was calculated as the concentration range of input
templates for which the R2 of the linear fitting between log output
and log input was larger than 0.98.

2.7. Statistical Analysis

Relative fluorescence intensity of droplets was determined by tak-
ing the mean grayscale in ImageJ and normalized to the grayscale
range. 865 droplets were analyzed for the investigation of the cor-
relation between precipitate presence and fluorescence signal,
and more than 1000 droplets were analyzed for the investigation
of droplet heating and merging. In the validation experiments
using different vortex times, each data point represents a single
repeat. In all other cases, data represent mean ± SD with n ≥

3. A two-sided two-sample t-test was adopted for hypothesis test-
ing, and significance was defined as p ≤ 0.05. Origin (OriginLab
Corporation) was used for the statistical analysis.

3. Results

3.1. Overview of the Method

Standard digital nucleic acid amplification tests use monodis-
perse droplets, and the concentration, C, is estimated following:

C = − ln P−∕V (1)

where P− is the fraction of negative droplets and V is the volume
of individual droplets.

For an individual droplet, the probability of being occupied is
exp( − V · C), and the probability of being empty is 1 − exp(
− V · C), as predicted by the Poisson distribution. When us-
ing polydisperse droplets, assume that the observation showed
M empty droplets, with the volume of each droplet being V−

i ,
and N occupied droplets, with the volume of each droplet being
V+

j . Using maximum likelihood estimation, which maximizes
the likelihood of this particular observation, the concentration,
C, satisfies[11]

M∑

i=1

V−
i +

N∑

j=1

V+
j =

N∑

j=1

V+
j

[1 − exp(−V+
j ⋅ C)]

(2)

Solving Equation (2) gives the estimate of sample concentra-
tion, C.[12]
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Figure 1. Schematic of the deep learning-enabled polydisperse emulsion-based digital loop-mediated isothermal amplification (deep-dLAMP). The
sample-reagent mix and oil are vortexed to generate polydisperse emulsions, which then go through isothermal incubation to amplify the nucleic acids
of interest, generating precipitate in occupied emulsions. The emulsions are then imaged in a flow cell, and deep learning image analysis is utilized to
segment droplets and determine the occupancy based on precipitate presence. The volumes and occupancy status of each emulsion are then used to
calculate the nucleic acid concentration. Spacing oil is infused into the flow cell to avoid emulsion packing.

Figure 2. Presence of precipitates as a reliable indicator of occupied emulsions. a) Brightfield, SYBR Green fluorescence, and merged micrographs of
emulsions after LAMP reaction using samples with different nucleic acid concentrations. Scale bars, 200 μm. b) Relative fluorescence intensity and
precipitate status of each droplet. The presence of precipitate coincided with high fluorescence intensity.

The deep learning-enabled polydisperse emulsion-based digi-
tal loop-mediated isothermal amplification (deep-dLAMP) devel-
oped in this work included the following steps. The testing sam-
ple and LAMP reagents were mixed, and the mix was emulsified
by vortexing using oil with a surfactant as the continuous phase,
as shown in Figure 1. The emulsions were then incubated for
the LAMP reaction to occur before being imaged in a flow cell.
The images were then processed to calculate the volume of each
emulsion and classify the emulsion as empty or occupied. LAMP
reactions generated the byproduct of magnesium pyrophosphate
which was visible as precipitate under bright field.[15] Therefore,
the presence of precipitates was adopted as the main feature for
droplet classification. The processed data were then used to esti-
mate the sample concentration by solving Equation (2).

A prerequisite of the successful implementation of deep-
dLAMP is that precipitates can reliably indicate occupied
emulsions. We generated emulsions using samples with differ-
ent nucleic acid concentrations, performed the LAMP reaction,
and observed the correlation between the precipitate presence

and fluorescence. Results showed that higher nucleic acid
concentrations led to a more frequent presence of emulsions
with precipitates (Figure 2). If we thresholded the fluorescence
intensity at 0.3, 99.0% of the “fluorescently” positive droplets had
precipitate (true positive), and 99.6% of the fluorescently neg-
ative droplets had no precipitates (true negative), showing that
precipitates can indeed serve as a marker of occupied droplets.

Volume change of the droplets, such as evaporation and coales-
cence during the amplification, poses a challenge to the efficacy
of deep-dLAMP. To characterize the evaporation and coalescence
of droplets, we generated uniform droplets of FITC solution
and TRITC solution, respectively, using microfluidics (Figure S1,
Supporting Information). The two sets of droplets were pooled
and incubated at 63 °C for 45 min. The droplet diameters before
and after incubation were 54.3 ± 2.2 μm and 54.5 ± 2.0 μm, re-
spectively, with no significant difference, as shown in Figure S2,
Supporting Information, suggesting that volume shrinking dur-
ing the amplification was negligible. This seemingly surprising
observation was likely attributed to the heated lid used by the PCR
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Figure 3. Schematic showing the flow of the deep learning-enabled droplet segmentation and classification. a) Data generation via droplet area mask-
ing/segmentation and occupancy labeling. b) The model training uses the region proposal network (RPN) to scan the image for droplet occurrence.
The regions of interest (RoI) are aligned for subsequent classification and droplet region refinement prediction using a convolutional neural network
(CNN). c) Model predictions on new samples. Both the droplet regions and occupancy labels are predicted in one shot. d) Model evaluation on the test
data set. (left) The mean average precision (mAP) is plotted as a function of the intersection over union (IoU) and (right) the precision-recall curve as a
function of IoU.

instrument, which prevented a continuous mass transport from
the aqueous phase to the tube lid. In addition, results showed
that the fluorescence of FITC and TRICT were mostly isolated in
individual droplets (Figure S3a, Supporting Information), with
most droplets showing either high TRICT or high FITC (Figure
S3b, Supporting Information). For example, with a FITC thresh-
old of 0.5 and a TRITC threshold of 0.3, 99.46% of the droplets
would fall into the two quadrants with high FITC or high TRITC
intensity, suggesting that droplet coalescence was minimal.

3.2. Image Analysis Pipeline for Droplet Segmentation and
Classification

We then sought to develop an image analysis pipeline to output
the area and occupancy status of each droplet within the frame.
We took video frames as static images and then segmented the
droplet areas and labeled the corresponding occupancy informa-
tion manually to generate the initial training data for the model.
The image-to-label process is shown in Figure 3a, where the “pos-
itive” droplets that have precipitates inside were masked in red,
while the empty ones or the “negative” droplets were in green.
The data label was repeated on 638 video frames with nucleic acid
concentrations ranging from 1 to 104 copies μl−1. The original im-
ages and the associated label and mask information formed the
training (90%) and test (10%) data for the Mask R-CNN model.
The Mask R-CNN scanned each image for droplets using the
region proposal networks (RPN). Then regions that contained
droplets were aligned to be classified in terms of occupancy infor-
mation. The exact boundaries of the droplet were predicted using
a convolutional neural network (CNN), as shown in Figure 3b.
More details about the model implementation and training are
in the Methods section. Once the model was trained, it was auto-

matically applied to new images/videos for droplet segmentation
and classification (Figure 3c). The mean average precision (mAP)
of the model prediction on the test data at different thresholds of
intersection over union (IoU) and the precision-recall curve of the
classification were shown in Figure 3d. The trained Mask R-CNN
showed remarkable accuracy with 88% mAP with IoU up to 0.8.
When IoU went to 0.9 (the predicted box had to overlap with the
true box for more than 90%), the mAP was reduced due to the
stringent requirements. The precision-recall curve also followed
the same trend, where a moderate to high (0.5–0.8) IoU threshold
gave both high precision and recall.

3.3. Analysis of the Measurements

The image analysis pipeline generated two types of data of
each emulsion, namely the occupancy status and the droplet
area, for the inference of nucleic acid concentrations based
on Equation (2). We first performed additional experiments to
characterize the relationship between the droplet volume and
the measured droplet area (Figure S4; Methods, Supporting
Information), and then we designed experiments to validate
these two types of data separately.

To validate the detection results of occupancy status, we gen-
erated monodisperse droplets with well-defined sizes (diameter,
46.5 ± 1.3 μm; volume, 0.052 nl) using microfluidics and per-
formed LAMP reaction and the image analysis. After the image
analysis, the majority of the droplets were precisely segmented
and correctly classified, as demonstrated in Figure 4. The occu-
pancy data were then used to calculate the nucleic acid concentra-
tions using uniform volume assumption following Equation (1).
Results showed that at high concentrations, the calculated
concentrations were very close to the true concentrations. For
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Figure 4. Representative micrographs showing the results of droplet segmentation and classification after the image analysis using monodisperse
and polydisperse emulsions on samples with different nucleic acid concentrations. Transparent shadows represent the detected droplet regions, and
rectangles represent the bounding boxes, with red indicating the occupied droplets and green the empty droplets. Scale bars, 200 μm in the main figures
and 50 μm in the insets.

example, when the sample concentration was 1.12 × 102, 1.12 ×
103, and 1.12 × 104 copies μl−1, where the theoretical fractions
of positive droplets were 0.57%, 5.5%, and 43.5%, respectively,
the calculated concentration was (1.80 ± 0.22) × 102, (0.98 ±
0.04) × 103, and (0.86 ± 0.01) × 104 copies/μl−1, respectively,
suggesting that the detection accuracy was relatively adequate at
these concentrations. When the concentration was lower than
1.12 × 102 copies μl−1, the method tended to overestimate the
concentration. This inaccuracy was likely because the fractions of
positive droplets at these concentrations were very low (0.005%
- 0.05%), and that false positives, induced by debris, double
emulsion, and dust on the channel walls, could have a dramatic
effect on the calculation.

To provide a preliminary validation of the volume detection
and the algorithm based on non-uniform volume assumption,
we further calculated the nucleic acid concentrations by solving
Equation (2). As shown in Figure 5, Equation (2), along with the
analyzed volume data, generated very similar results compared
to those based on uniform assumption, with relative differences
smaller than 10% when the concentration ranged from 102 to 104

copies μl−1. At lower concentrations, the differences were around
20 copies μl−1. These results suggested that the area detection was
accurate and that the algorithm based on non-uniform assump-
tion could generate comparable measurements with the standard
algorithm based on the uniform volume assumption.

We then generated polydisperse droplets by vortexing and
performed the complete test and analysis. As demonstrated in
Figure 4, most droplets were accurately segmented and classi-
fied using the image analysis pipeline. However, three types of
droplets were not detected. Droplets that were small, typically
with diameters smaller than 24 μm (0.007 nl), required very
small boxes for scanning and were computationally expensive
to be detected. Droplets that were very large, typically with

Figure 5. The deep-dLAMP measurements using monodisperse emul-
sions calculated by Equation (1) (uniform volume assumption), using
monodisperse emulsions calculated by Equation (2) (non-uniform vol-
ume assumption), and using polydisperse emulsions calculated by Equa-
tion (2) (non-uniform volume assumption). The line of Y = X is shown for
reference. Data represent mean ± SD with n = 3. Mono., monodisperse.
Poly., polydisperse.

equivalent diameters larger than 250 μm (8.2 nl), tended to be
highly deformed with irregular shapes, making them difficult to
be detected. As such, these two types of droplets were left out.
Since these volumes accounted for only 2.08% of the total vol-
ume and the presence of nucleic acids in each emulsion can be
regarded as independent incidence, we believe leaving out these
types of droplets would not bring in bias to the measurement.
In addition, droplets close to the frame edges with incomplete
shapes were not detected by design.
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Figure 6. Effect of vortex times on the deep-dLAMP measurements. a) Representative micrographs of the emulsions in the flow cell generated by different
vortex times. Scale bars, 200 μm. b) Frequency densities are plotted as a function of the equivalent diameters of the emulsions generated using different
vortex times. c) Calibrated measurements using the standards of different concentrations with different vortex times. The line of Y = X is shown for
reference.

The volume and occupancy data generated from the deep
learning image analysis were then used to calculate nucleic acid
concentrations based on Equation (2). As shown in Figure 5,
when the nucleic acid concentrations were as low as 1.1 copies
μl−1, the measured concentrations showed suboptimal accuracy,
likely due to the unmet high demand on occupancy detection
at these concentrations. At higher concentrations, the measured
concentrations were much closer to the expected values. For
example, the measured concentrations for 1.1 × 102, 1.1 × 103,
and 1.1 × 104 copies μl−1 were (0.77 ± 0.02) × 102, (0.57 ± 0.01)
× 103, and (0.46 ± 0.02) × 104 copies μl−1, respectively. Though
the measured data showed a systematical underestimation, the
logarithm of the measured concentrations showed good linearity
with the logarithm of the standard concentrations. In the concen-
tration range of 37.2 to 1.1 × 104 copies μl−1, the R2 of the linear
fitting was 0.99, indicating that the dynamic range spanned from
37.2 to 1.1 × 104 copies μl−1. This linear fitting also provided a
calibration curve for future measurements, which followed

Ccal. = 0.50 ⋅ Cmea.
1.19 (3)

where Ccal. is the calibrated measurement and Cmea. is the calcu-
lated measurement from Equation (2). The difference between
the measured and true concentrations was likely due to the
error when converting emulsion area to volume, especially at
high concentrations. We additionally performed deep-dLAMP on
three blank samples, and the measurements were 5.24, 5.78, 2.49

copies μl−1, respectively, indicating that the limit of detection was
5.6 copies μl−1 (see Methods, Supporting Information).

3.4. Characterization of the deep-dLAMP

We then sought to investigate how different parameters would
affect the deep-dLAMP measurements. The vortexing process-
ing determined the size distribution of the resultant emulsions
and could directly affect the measured concentrations. To exam-
ine that, we subjected samples of different nucleic acid concen-
trations (37.2 - 3720 copies μl−1) to a range of vortexing time (15
- 55 s) and performed deep-dLAMP. As anticipated, the gener-
ated emulsions became smaller as the vortex time increased, and
the diameter distribution showed a trend of left shift at higher
vortex time, as shown in Figure 6a,b. However, the nucleic acid
concentrations calculated using deep-dLAMP did not show a sig-
nificant dependence on the vortex times. After calibration using
Equation (3), measurements from experiment groups using dif-
ferent vortex times mostly had similar values, which were close
to the true concentrations, as shown in Figure 6c. To assess the
agreement of the calibrated measurements with true values, we
calculated the R2 of the calibrated measurements over Y = X in
the log-log plot. Results showed that the R2 was 0.96, 0.86, 0.96,
0.97, and 0.95 for the vortex time of 15s, 25s, 35s, 45s, and 55s,
suggesting that the calibrated measurements could represent the
true values. Nevertheless, when the vortex time was high, such
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Figure 7. Effect of image qualities on the deep-dLAMP measurements. a) Representative original micrographs captured by different cameras and the
corresponding analyzed images. Scale bars, 200 μm. b) The calibrated measurements using different cameras. Data represent mean ± SD with n = 3.

as 45 s and 55 s, the calibrated measurements were sometimes
higher than expected, which were likely because extended vor-
texing resulted in more double emulsions that could be falsely
identified as occupied emulsions, thus overestimating the con-
centrations. These results suggested that the deep-dLAMP mea-
surements were relatively robust on different emulsification con-
ditions, though prolonged vortexing should be avoided.

Image quality could have a significant impact on the perfor-
mance of the droplet segmentation and classification, conse-
quently affecting the measurements. During the model training,
we used data augmentation techniques, such as flipping, blur-
ring, transformation, and brightness adjustment, to mimic sit-
uations that were different from our training data. To verify the
robustness of the model, we performed deep-dLAMP using two
additional microscopes and cameras with different lighting and
image qualities. We designated the original camera and these two
additional cameras as Camera #1, Camera #2, and Camera #3,
respectively. As demonstrated in Figure 7a, the image analysis
pipeline was able to accurately segment and classify emulsions.
In addition, the calibrated measurements from Camera #2 and
Camera #3 were 91.0± 9.6 and 86.0± 9.8 copies μl−1, respectively,
both of which were not significantly different from that of 88.6 ±
11.6 copies μl−1 from Camera #1 (Figure 7b). These results sug-
gested that the deep-dLAMP can generate robust measurements
in different laboratories equipped with different microscopes and
cameras.

The specificity of deep-dLAMP mainly depends on the perfor-
mance of the LAMP primers and the amplification reactions. As
such, the specificity of deep-dLAMP should be as good as the
LAMP reaction itself. Nonetheless, we performed experiments to
verify this point. We used two primer sets, which were designed
to detect SARS-CoV-2 and Proteus mirabilis, respectively, and
cross-tested the corresponding samples using the deep-dLAMP.
As shown in Figure S6, Supporting Information, little cross-
reaction was observed, suggesting that the deep-dLAMP had
good specificity.

4. Discussion and Conclusions

In this work, we reported deep learning-enabled polydisperse
emulsion-based digital loop-mediated isothermal amplification
(deep-dLAMP) to perform digital nucleic acid amplification

tests using easily accessible laboratory equipment. In deep-
dLAMP, polydisperse emulsions were generated to perform
LAMP reaction therein, and the precipitates of magnesium
pyrophosphate were detected by deep learning-based image
analysis to determine emulsion occupancy. The volume and
occupancy of each emulsion were then used to calculate the
nucleic acid concentration based on the Poisson distribution.
We further showed that deep-dLAMP measurements were
robust at different vortex times and image qualities. Compared
with commercial droplet digital PCR, deep-dLAMP holds the
merits of low instrument cost and easy operation (Table S4,
Supporting Information). We envision that deep-dLAMP can
serve as a low-cost, portable nucleic acid test with absolute
quantification.

In the current form, deep-dLAMP was implemented by cap-
turing images at 20 frames per second, and each frame was re-
garded as an independent sampling in the data analysis. As such,
emulsions were repetitively sampled for the concentration calcu-
lations. Though we performed analysis to justify this sampling
strategy, as shown in Figure S6, Supporting Information, it would
be desirable to perform droplet tracking in the videos. Conse-
quently, each droplet would be counted only once in the concen-
tration inference, and the overall detected volume could be explic-
itly reported. In addition, as each droplet would be detected and
classified in a few frames, the occupancy status could be decided
by the majority vote, which could potentially further improve the
detection and measurement accuracy.

Using the calibration curve of Equation 3, the calibrated
results showed robustness on different experimental conditions,
including different samples and flow chambers. It suggested that
the calibration mainly corrected the inaccurate droplet volumes
in the calculation, and deep-dLAMP still provides an absolute
quantification as long as the volume data is properly corrected.
Therefore, if the design of the flow chambers is consistent,
repeated calibration would not be necessary. Nevertheless, in
future work, it is desirable to confirm that inaccurate prediction
of droplet volumes indeed contributed to the underestimation
of the nucleic acid concentration. For example, droplet volumes
may be measured more accurately using sophisticated 3D
imaging technologies. In terms of the experimental operation,
the current procedure of droplet imaging requires a syringe
pump and manual emulsion injection since a spacing oil is
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required to separate emulsions apart and maintain their round
shapes. Though this fluidic strategy served the purpose of
validating the concept of the deep-dLAMP, it would be beneficial
to develop more user-friendly droplet reading methods in the
future. For example, by designing a negative pressure-driven
flow chamber with separate inlets of spacing oil and emulsion,
the reading step can be achieved by simply pulling an empty
syringe at the outlet. In addition, using oil (such as mineral oil)
with a similar density as water could potentially eliminate the
need for spacing oil and further simplify the droplet reading
setup.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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